Aerosol optical properties calculated from size distribution measurements: An uncertainty study | |||||
---|---|---|---|---|---|
글쓴이 | 관리자 (IP: *.223.176.122) | 작성일 | 2024-05-13 13:35 | 조회수 | 367 |
Aerosol optical properties calculated from size distribution measurements: An uncertainty study
Abstract We use Monte Carlo uncertainty propagation to estimate the uncertainty of aerosol scattering coefficients, rs, that have been derived from measured particle size distributions. We consider the particular case where the size distributions are measured using a combination of a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS). Uncertainties that are propagated include those intrinsic to the instruments and those that arise from variabilities in aerosol microphysical properties, including particle shape, density, and complex refractive index. Particular emphasis is put on the size dependent counting efficiency of both instruments which have weaknesses in a particle size range that dominates aerosol optical properties. The T-matrix method is utilized to simulate the effect of particle shapes on rs. To narrow the probability distribution of aerosol properties we discuss uncertainties for a single geographic location, which is the Southern Great Plains site (SGP) of the Department of Energy’s Atmospheric Radiation Measurement (ARM) User Facility. We estimate a 95% confidence interval for rs between 40% and þ68%. A partial dependence analysis, for which we use generalized additive models, identifies uncertainties in counting efficiency and particle shapes as the dominant contributors to the size of the confidence interval. ▶출처 : AEROSOL SCIENCE AND TECHNOLOGY 2023, VOL. 57, NO. 7, 597–607 |
|||||
파일 | Aerosol optical properties calculated from size distribution measurements An uncertainty study.pdf(2.6M) |