Characteristics and Source Profiles of Volatile Organic Compounds by Several Business Types in an Industrial Complex Using a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry | |||||
---|---|---|---|---|---|
글쓴이 | 관리자 (IP: *.223.176.122) | 작성일 | 2024-09-30 16:51 | 조회수 | 233 |
Characteristics and Source Profiles of Volatile Organic Compounds (VOCs) by Several Business Types in an Industrial Complex Using a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS)
Abstract Volatile organic compounds (VOCs) are one of significant contributors to air pollution and have profound effects on human health and the environment. This study introduces a detailed analysis of VOC emissions from various industries within an industrial complex using a high-resolution measurement instrument. This study aimed to identify the VOC profiles and their concentrations across 12 industries. Sampling was conducted across 99 facilities in an industrial complex in South Korea, and VOC analysis was performed based on measurement data using a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). The results indicated that the emission of oxygenated VOCs (OVOCs) was dominant in most industries. Aromatic hydrocarbons were also dominant in most industries, except in screen printing (SP), lubricating oil and grease manufacturing (LOG), and industrial laundry services (ILS) industries. Chlorinated VOCs (Cl-VOCs) showed a relatively higher level in the metal plating (MP) industry than those in other industries and nitrogen-containing VOCs (N-VOCs) showed high levels in general paints and similar product manufacturing (PNT), MP, and ILS industries, respectively. The gravure printing industry was identified as the highest emitter of VOCs, with the highest daily emissions reaching 5934 mg day−1, primarily consisting of ethyl acetate, toluene, butyl acetate, and propene. The findings suggest that the VOC emissions from the gravure printing and plastic synthetic leather industries should be primarily reduced, and it would be the most cost-effective approach to improving air quality. This study can provide the fundamental data for developing effective reduction technologies and policies of VOC, ultimately contributing to enhanced atmospheric models and regulatory measures. ▶출처 : Atmosphere 2024, 15, 1156. https:// doi.org/10.3390/atmos15101156 |
|||||
파일 | atmosphere-15-01156.pdf(2.6M) |